Лунная афера США

Лунная афера США

4.2.15. Выход на орбиту Луны.

       Смогут ли двое астронавтов, побывавших на поверхности Луны, возвратиться на Землю, если лунному модулю не удастся выйти на расчетную орбиту вокруг Луны для стыковки с командным модулем?

       Следует отметить, что собственно выход на некую орбиту вокруг Луны ещё не является достаточным условием для успешного выполнения данного этапа. Лунный модуль должен выйти на орбиту не только с заданными параметрами скорости, афелия, перигелия и направления, но также именно в такое место и время, чтобы его полёт проходил практически синхронно с командным модулем, а расстояние между модулями не превышало нескольких километров.

       Для этого, во-первых, старт с Луны должен быть осуществлён с точностью до секунды. Как известно, командный модуль летит над Луной со скоростью приблизительно 1,7 км/с. Если опоздать со стартом даже на несколько секунд, командный модуль может стать недосягаемым, ведь ситуация отставания космических кораблей в орбитальном полете друг от друга кардинально отличается от отставания, к примеру, автомобилей на дороге друг от друга. Если первый автомобиль может притормозить, а другой, наоборот, ускориться, и таким образом они могут решить задачу встречи, то ускорение космического корабля, находящегося в орбитальном полёте, приводит не к сближению с более медленным кораблем, а к повышению орбиты. Такой вариант развития событий как минимум тянет за собой дополнительный расход топлива на манёвры сближения у обоих модулей, которого на этом этапе полёта имеется очень ограниченное количество.

       Во-вторых, тяга маршевого двигателя за всё время разгона и выхода на орбиту не должна отклоняться от расчётной. Конечно, данный двигатель можно довести до нужной степени совершенства на земных стендах. Но как он поведет себя в космосе на пятые сутки полёта после всех стартов, перестыковок, взрывов пиропатронов, посадки и взлёта с Луны – не знает никто. Даже если параметры его работы в эти минуты хоть на пару процентов будут отличаться от расчётных, о выходе на необходимую орбиту для стыковки с командным модулем говорить не придётся. Кроме этого, вторая попытка выхода на окололунную орбиту невозможна, так же как и нет дублирующего маршевого двигателя на случай выхода из строя основного.

       В-третьих, «компьютер» возвращаемого лунного модуля должен оперативно обрабатывать данные от оптических сенсоров и системы пеленгации, чтобы выдавать микродвигателям ориентации команды на выполнение импульсов, подправляющих направление разгона. Мы уже говорили о том, что у НАСА на тот момент не было технологии вертикального взлёта и посадки в вакууме на одном маршевом двигателе. Неравномерная выработка топлива и окислителя из баков, разнесённых по разные стороны от центра масс такого корабля, вполне очевидным образом создает вращающий момент, погасить который теоретически могут только микродвигатели ориентации. Но в таком случае не менее очевиден снос с идеальной траектории разгона, направление которого зависит в первую очередь от того, каким боком относительно целевой орбиты разворачивает корабль.

       Чтобы учесть все эти факторы в трехмерной области, нужны не только алгоритмы и соответствующее счетно-решающее устройство. Самое интересное, что в данном случае этот «компьютер» должен иметь возможность давать команды на выполнение импульсов микродвигателям ориентации, причем не только каждому по отдельности и на разное время, но и в необходимых по ситуации комбинациях с разной интенсивностью, чего в официальной документации по «Аполлонах» нет! Микродвигатель ориентации мог быть только включённым или выключенным определённое время; управлять его мощностью не предусматривалось.

       В-четвёртых, все 16 микродвигателей ориентации должны работать идеально: включаться и выключаться в положенные моменты и выдавать в промежутках между ними положенное количество импульса. Если хотя бы у одного из них последует отказ в момент, когда необходимо выполнить корректировку направления разгона, мы получим такое отклонение от разгонной траектории, что останется только свечки в церкви поставить.

       Но даже при полном выполнении всех вышеназванных условий (для реализации некоторых из которых, напоминаю, у НАСА на тот момент вообще не было никаких технических решений) выход на орбиту вокруг Луны с необходимой точностью на самом деле, как оказалось в первом десятилетии ХХI века, не является такой уж тривиальной задачей. Дело в том, что перед выполнением миссий пилотируемого «покорения» Луны у НАСА не было т.н. гравитационной карты для данного небесного тела. А когда эту карту стало возможным сделать, оказалось, что перепады силы притяжения над разными участками Луны имеют довольно существенные значения, поэтому-де эту новую информацию обязательно нужно будет учитывать в будущем при освоении нашего единственного природного спутника! Спрашивается, как же тогда в далеких 1969-1972 годах НАСА ухитрялось с такой невероятной точностью выводить на необходимую орбиту вокруг Луны примитивный крохотный модуль с двумя астронавтами, свернутыми в калачики, не имея этих карт?

       Но и это ещё не всё. Хоть о проколах и технических ляпах от НАСА при «покорении» Луны можно рассказывать до бесконечности, но один из таких проколов-приколов, бросающихся в глаза именно при выполнении этого этапа, мне особенно нравится.

       При сгорании аэрозина в тетраоксиде азота выделяется приблизительно 148 килокалорий на моль топливной смеси, что собственно и служит причиной выбора этих компонентов в качестве топлива для ракетных двигателей. И при этом сопло маршевого двигателя в возвращаемом лунном модуле НАСА почему-то упрятало вовнутрь корпуса этого аппарата! Теперь на досуге подсчитайте, насколько поднимется температура этого корпуса в вакууме, если сжечь с помощью маршевого двигателя все 2353 литра топлива, которое там находится… Кстати, внутри обитаемого отсека объёмом 6,7 м3 – чистый кислород!

       К этому моменту НАСА уже имело достаточно возможностей, чтобы взорвать своих астронавтов. Но чтобы испечь их живьём – в светлые головы «конструкторов» из Голливуда такая идея пришла только на этом этапе миссии…

* * *

       Во всей истории мировой космонавтики только баронам Мюнхгаузенам из НАСА необходимо было выводить космический корабль на окололунную орбиту из статического положения на поверхности Луны. Советские «Луны», занимавшиеся доставкой проб лунного грунта на Землю, были избавлены от необходимости выполнять такой манёвр, поскольку они сразу выходили на траекторию полёта к Земле, разгоняясь с места до скорости, свыше второй космической для Луны.

       Исходя из этого, никакой статистики по выводам автоматических или пилотируемых космических кораблей с поверхности Луны на окололунную орбиту, кроме официальной легенды НАСА, по сей день (!) не имеется. Несмотря на то, что для всех исследователей отсутствие технологии пилотируемого выхода на точную окололунную орбиту является очевидным, мы примем оценку вероятности успешного выполнения данного этапа на уровне 0,99. Надеюсь, в свете всего вышеизложенного защитники НАСА не станут утверждать, что данная оценка слишком занижена.

Читайте также:

Добавить комментарий